The first model of burglary

Extending the model

Discussion 000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adding police to a mathematical model of burglary Funded by: NSERC, ORS Award

Ashley B. Pitcher (OCIAM) Supervisors: J. R. Ockendon and C. Breward (OCIAM) Collaborator: Shane Johnson (UCL)

Workshop on Mathematical Models of Urban Criminality Pisa 2008

The first model of burglary

Extending the model

Discussion 000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Why burglary?

- Highly reported ∴ good data
- Patrols have a greater effect on deterring property crime than violent crime
- Data shows burglaries are highly spatially and temporally clustered
 - Repeat victimisation
 - Near-repeat victimisation

Discussion 000

Evidence from data for the Boost Hypothesis

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●三 - のへで

Discussion 000

Overview of the first model

(MB Short, MR D'Orsogna, VB Pasour, GE Tita, PJ Brantingham, AL Bertozzi, LB Chayes)

Each house is described by its lattice site s = (i, j) and a quantity $A_s(t)$ (attractiveness).

$$A_s(t) = A_s^0 + B_s(t) > 0$$

Probability a burglar commits a burglary:

$$p_s(t) = 1 - e^{-A_s(t)\delta t}$$

During each time interval δt , burglars must perform exactly one of the following two tasks:

- Burgle the home at which they are currently located, or
- 2. move to one of the adjacent homes (biased towards high $A_s(t)$).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The first model of burglary

Extending the model

Discussion 000

 $n_s =$ number of burglars at site s

When a house is burgled:

- The corresponding burglar is removed from the lattice.
- B_s is increased by a quantity θ then decays over time.

$$B_s(t+\delta t) = B_s(t)(1-\omega_1\delta t) + \theta n_s(t)p_s(t)$$
(1)

Near-repeat victimisation is modelled by allowing ${\cal B}_{s}(t)$ to spread to its neighbours.

$$B_{s}(t+\delta t) = \left((1-\eta)B_{s}(t) + \frac{\eta}{4} \sum_{s' \sim s} B_{s'}(t) \right) (1-\omega_{1}\delta t) + \theta n_{s}(t)p_{s}(t)$$
 (2)

which can be written in terms of the discrete spatial Laplacian as

$$B_s(t+\delta t) = \left(B_s(t) + \frac{\eta\ell^2}{4}\Delta B_s(t)\right)(1-\omega_1\delta t) + \theta n_s(t)p_s(t), \quad (3)$$

where

$$\Delta B_s(t) = \Big(\sum_{s' \sim s} B_{s'}(t) - 4B_s(t)\Big)/\ell^2. \tag{4}$$

The first model of burglary

Extending the model

Discussion 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Burglars come from sites they did not burgle at in the previous time step
- Burglars are generated at each site at a rate Γ

$$n_s(t+\delta t) = A_s(t) \sum_{s'\sim s} \frac{n_{s'}(t)[1-p_{s'}(t)]}{T_{s'}(t)} + \Gamma \delta t,$$
(5)

where

$$T_{s'}(t) := \sum_{s'' \sim s'} A_{s''}(t) = 4A_{s'}(t) + \ell^2 \Delta A'_s(t).$$
(6)

• Convert n_s to a density ρ_s by dividing it by ℓ^2

The first model of burglary

Extending the model

Discussion 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Burglars come from sites they did not burgle at in the previous time step
- Burglars are generated at each site at a rate Γ

$$n_s(t+\delta t) = A_s(t) \sum_{s' \sim s} \frac{n_{s'}(t)[1-p_{s'}(t)]}{T_{s'}(t)} + \Gamma \delta t,$$
(5)

where

$$T_{s'}(t) := \sum_{s'' \sim s'} A_{s''}(t) = 4A_{s'}(t) + \ell^2 \Delta A'_s(t).$$
(6)

• Convert n_s to a density ρ_s by dividing it by ℓ^2

The first model of burglary

Extending the model

Discussion 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Burglars come from sites they did not burgle at in the previous time step
- Burglars are generated at each site at a rate Γ

$$n_s(t+\delta t) = A_s(t) \sum_{s' \sim s} \frac{n_{s'}(t)[1-p_{s'}(t)]}{T_{s'}(t)} + \Gamma \delta t,$$
(5)

where

$$T_{s'}(t) := \sum_{s'' \sim s'} A_{s''}(t) = 4A_{s'}(t) + \ell^2 \Delta A'_s(t).$$
(6)

• Convert n_s to a density ρ_s by dividing it by ℓ^2

Discussion 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Continuum equations

Let $\delta t \to 0$ and $\ell \to 0$ with the constraint that $\ell^2/\delta t$ tends to the constant Dand $\epsilon = \theta \delta t$ and $\gamma = \Gamma/\ell^2$.

Then the continuum equations corresponding to dynamic burglary attractiveness and burglar density are:

$$\frac{\partial B}{\partial t} = \frac{\eta D}{4} \nabla^2 B - \omega_1 B + \epsilon D \rho (A^0 + B), \tag{7}$$

$$\frac{\partial \rho}{\partial t} + \frac{D}{4} \nabla \cdot \left(\frac{2\rho}{A^0 + B} \nabla B \right) = \frac{D}{4} \nabla^2 \rho - \rho (A^0 + B) + \gamma, \quad (8)$$

where A^0 is assumed to be spatially uniform.

Discussion 000

Nondimensionalisation

The natural timescale is $1/\omega_1$, the time it takes for the dynamic attractiveness of a newly burgled home to return to its baseline value. Using

$$t = \frac{1}{\omega_1}t', \quad x = \frac{1}{2}\sqrt{\frac{D}{\omega_1}}x', \quad y = \frac{1}{2}\sqrt{\frac{D}{\omega_1}}y',$$
$$A = \omega_1(A^0 + B)', \quad \rho = \frac{\omega_1}{\epsilon D}\rho',$$

and, dropping primes, we have the nondimensional system

$$\begin{aligned} \frac{\partial B}{\partial t} &= \eta \nabla^2 B - B + \rho (A^0 + B), \\ \frac{\partial \rho}{\partial t} &+ \boldsymbol{\nabla} \cdot \left(\frac{2\rho}{A^0 + B} \boldsymbol{\nabla} B \right) = \nabla^2 \rho - \rho (A^0 + B) + \overline{B}, \end{aligned}$$

where $\overline{B} = \frac{\epsilon D \gamma}{\omega_1^2}$ (the homogeneous equilibrium).

The first model of burglary

Extending the model

Discussion 000

Numerical solution

Initial conditions: $\rho(\mathbf{x}, 0) = \overline{\rho}$, and similary for *B* except a few cells start with values slightly higher than \overline{B} .

Boundary conditions: periodic

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The first model of burglary

Extending the model

Discussion 000

Police deterrence

- · Visible police presence causes a decrease in local crime
- Crime displacement or diffusion of benefits?

Let $d_{s}(t)$ be the reduction in the statistical rate of burglary when a burglar is present.

Then

$$p_s(t) = 1 - e^{-\left(A_s(t) - d_s(t)\right)\delta t}.$$
 (9)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Then the equation for the dynamic burglary attractivness becomes

$$\frac{\partial B}{\partial t} = \frac{\eta D}{4} \nabla^2 B - \omega_1 B + \epsilon D \rho (A^0 + B - d).$$
(10)

Discussion 000

High $d_s(t)$ relative to neighbouring sites should reduce the chance of burglars moving there in the next time step. Then the discrete equation for the number of burglars at site *s* becomes

$$n_s(t+\delta t) = \left(A_s^0 + B_s(t) - d_s(t)\right) \sum_{s' \sim s} \frac{n_{s'}(t)[1-p_{s'}(t)]}{T_{s'}(t)} + \Gamma \delta t, \quad (11)$$

where

$$T_{s'}(t) := \sum_{s'' \sim s'} \left(A^0_{s''} + B_{s''}(t) - d_{s''}(t) \right).$$
(12)

Then the corresponding continuum equation for burglar density is

$$\frac{\partial\rho}{\partial t} + \frac{D}{4} \nabla \cdot \left(\frac{2\rho}{A^0 + B - d} \nabla (B - d)\right) = \frac{D}{4} \nabla^2 \rho - \rho (A^0 + B - d) + \gamma.$$
(13)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Discussion 000

Discrete equation for dynamic deterrence (d)

If we assume that police presence causes a deterrent effect as well as a diffusion of benefits to neighbouring sites, then we can write the following discrete equation for the dynamic deterrence:

$$d_{s}(t+\delta t) = \left[(1-\zeta)d_{s}(t) + \frac{\zeta}{4} \sum_{s' \sim s} d_{s'}(t) \right] (1-\omega_{2}\delta t) + \xi U_{s}(t), \quad (14)$$

which can be written in terms of the discrete spatial Laplacian as

$$d_s(t+\delta t) = \left[d_s(t) + \frac{\zeta\ell^2}{4}\Delta d_s(t)\right](1-\omega_2\delta t) + \xi U_s(t).$$
(15)

Note that this still incorporates the possibility of some displacement of burglary since burglars who choose not to burgle at a site *s*, move on to an adjacent site and may burgle there in the next time step.

Continuum equation for dynamic deterrence

Subtract $d_s(t)$ from both sides of the discrete equation, convert $U_s(t)$ to a density $u_s(t)$, divide by δt , and take the limit as $\delta t, \ell \to 0$ such that that $\ell^2/\delta t$ tends to the constant D.

Then the continuum equation for dynamic deterrence is

$$\frac{\partial d}{\partial t} = \frac{\zeta D}{4} \nabla^2 d - \omega_2 d + \xi D u.$$
(16)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The first model of burglary

Extending the model

Discussion 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

New p.d.e. system

We nondimensionalise as previously to obtain the nondimensional system

$$\begin{aligned} \frac{\partial B}{\partial t} &= \eta \nabla^2 B - B + \rho (A^0 + B - d), \\ \frac{\partial \rho}{\partial t} &+ \nabla \cdot \left(\frac{2\rho}{A^0 + B - d} \nabla (B - d) \right) = \nabla^2 \rho - \rho (A^0 + B - d) + \overline{B}, \\ \frac{\partial d}{\partial t} &= \zeta \nabla^2 d - \omega d + u, \end{aligned}$$

where $\omega = \omega_2/\omega_1$ and assume $A^0 + B - d > 0$.

First, assume constant police patrol strategy *u*.

Discussion 000

Stability to spatial disturbances

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The first model of burglary

Extending the model

Discussion •00

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What's next?

- Look at different police patrol strategies u
- Look at relaxing some of our assumptions:
 - uniformly distributed housing
 - spatially constant burglar generation rate (Γ) and static burglary attractiveness (A^0)
 - road network and side-of-the-street effects ignored
- Determine optimal patrol strategies

The first model of burglary

Extending the model

Discussion OOO

Optimal control formulation

$$\min_{u} J := \int_{0}^{T} \int_{\Omega} \rho \left(A^{0} + B - d \right) \mathrm{d}A \mathrm{d}t, \tag{17}$$

subject to the p.d.e.s

$$\begin{aligned} \frac{\partial B}{\partial t} &= \eta \nabla^2 B - B + \rho (A^0 + B - d), \\ \frac{\partial \rho}{\partial t} &+ \nabla \cdot \left(\frac{2\rho}{A^0 + B - d} \nabla (B - d) \right) = \nabla^2 \rho - \rho (A^0 + B - d) + \overline{B}, \\ \frac{\partial d}{\partial t} &= \zeta \nabla^2 d - \omega d + u, \end{aligned}$$

and the constraint

$$\int_{\Omega} u \, \mathrm{d}A = R, \ \forall t, \tag{18}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

to represent the officers available for preventative police patrols.

The first model of burglary

Extending the model

Discussion 00●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●