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Why burglary?

• Highly reported ∴ good data

• Patrols have a greater effect on deterring property crime than
violent crime

• Data shows burglaries are highly spatially and temporally
clustered

• Repeat victimisation
• Near-repeat victimisation
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Evidence from data for the Boost Hypothesis
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Overview of the first model
(MB Short, MR D’Orsogna, VB Pasour, GE Tita, PJ Brantingham, AL Bertozzi, LB Chayes)

Each house is described by its
lattice site s = (i, j) and a
quantity As(t) (attractiveness).

As(t) = A0
s + Bs(t) > 0

ℓ

ℓ

Probability a burglar commits a
burglary:

ps(t) = 1 − e−As(t)δt

During each time interval δt,
burglars must perform exactly
one of the following two tasks:

1. Burgle the home at which
they are currently located,
or

2. move to one of the
adjacent homes (biased
towards high As(t)).
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ns = number of burglars at site s

When a house is burgled:
• The corresponding burglar is removed from the lattice.
• Bs is increased by a quantity θ then decays over time.

Bs(t + δt) = Bs(t)(1 − ω1δt) + θns(t)ps(t) (1)

Near-repeat victimisation is modelled by allowing Bs(t) to spread to
its neighbours.

Bs(t+δt) =

(

(1−η)Bs(t)+
η

4

∑

s′
∼s

Bs′(t)

)

(1−ω1δt)+θns(t)ps(t) (2)

which can be written in terms of the discrete spatial Laplacian as

Bs(t + δt) =

(

Bs(t) +
ηℓ2

4
∆Bs(t)

)

(1 − ω1δt) + θns(t)ps(t), (3)

where
∆Bs(t) =

(

∑

s′
∼s

Bs′(t) − 4Bs(t)
)

/ℓ2. (4)
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• Burglars come from sites they did not burgle at in the previous
time step

• Burglars are generated at each site at a rate Γ

ns(t + δt) = As(t)
∑

s′
∼s

ns′(t)[1 − ps′(t)]

Ts′(t)
+ Γδt, (5)

where
Ts′(t) :=

∑

s′′
∼s′

As′′(t) = 4As′(t) + ℓ2∆A′

s(t). (6)

• Convert ns to a density ρs by dividing it by ℓ2
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Continuum equations

Let δt → 0 and ℓ → 0 with the constraint that ℓ2/δt tends to the
constant D
and ǫ = θδt and γ = Γ/ℓ2.

Then the continuum equations corresponding to dynamic burglary
attractiveness and burglar density are:

∂B

∂t
=

ηD

4
∇

2B − ω1B + ǫDρ(A0 + B), (7)

∂ρ

∂t
+

D

4
∇ ·

(

2ρ

A0 + B
∇B

)

=
D

4
∇

2ρ − ρ(A0 + B) + γ, (8)

where A0 is assumed to be spatially uniform.
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Nondimensionalisation

The natural timescale is 1/ω1, the time it takes for the dynamic
attractiveness of a newly burgled home to return to its baseline value.
Using

t =
1

ω1
t′, x =

1

2

√

D

ω1
x′, y =

1

2

√

D

ω1
y′,

A = ω1(A
0 + B)′, ρ =

ω1

ǫD
ρ′,

and, dropping primes, we have the nondimensional system

∂B

∂t
= η∇2B − B + ρ(A0 + B),

∂ρ

∂t
+ ∇ ·

(

2ρ

A0 + B
∇B

)

= ∇
2ρ − ρ(A0 + B) + B,

where B =
ǫDγ

ω2
1

(the homogeneous equilibrium).
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Numerical solution

Initial conditions: ρ(x, 0) = ρ,
and similary for B except a few
cells start with values slightly
higher than B.

Boundary conditions: periodic

η=0.01
Dynamic attractiveness

x

y

64 128

64

128
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Police deterrence

• Visible police presence causes a decrease in local crime

• Crime displacement or diffusion of benefits?

Let ds(t) be the reduction in the statistical rate of burglary when a
burglar is present.
Then

ps(t) = 1 − e−
(

As(t)−ds(t)
)

δt. (9)

Then the equation for the dynamic burglary attractivness becomes

∂B

∂t
=

ηD

4
∇

2B − ω1B + ǫDρ(A0 + B − d). (10)
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High ds(t) relative to neighbouring sites should reduce the chance of
burglars moving there in the next time step. Then the discrete
equation for the number of burglars at site s becomes

ns(t + δt) =
(

A0
s + Bs(t) − ds(t)

)

∑

s′
∼s

ns′(t)[1 − ps′(t)]

Ts′(t)
+ Γδt, (11)

where
Ts′(t) :=

∑

s′′
∼s′

(

A0
s′′ + Bs′′(t) − ds′′(t)

)

. (12)

Then the corresponding continuum equation for burglar density is

∂ρ

∂t
+

D

4
∇·

(

2ρ

A0 + B − d
∇(B−d)

)

=
D

4
∇

2ρ−ρ(A0+B−d)+γ. (13)
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Discrete equation for dynamic deterrence (d)

If we assume that police presence causes a deterrent effect as well
as a diffusion of benefits to neighbouring sites, then we can write the
following discrete equation for the dynamic deterrence:

ds(t + δt) =

[

(1 − ζ)ds(t) +
ζ

4

∑

s′
∼s

ds′(t)

]

(1 − ω2δt) + ξUs(t), (14)

which can be written in terms of the discrete spatial Laplacian as

ds(t + δt) =

[

ds(t) +
ζℓ2

4
∆ds(t)

]

(1 − ω2δt) + ξUs(t). (15)

Note that this still incorporates the possibility of some displacement of
burglary since burglars who choose not to burgle at a site s, move on
to an adjacent site and may burgle there in the next time step.
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Continuum equation for dynamic deterrence

Subtract ds(t) from both sides of the discrete equation, convert Us(t)
to a density us(t), divide by δt, and take the limit as δt, ℓ → 0 such
that that ℓ2/δt tends to the constant D.

Then the continuum equation for dynamic deterrence is

∂d

∂t
=

ζD

4
∇

2d − ω2d + ξDu. (16)
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New p.d.e. system

We nondimensionalise as previously to obtain the nondimensional
system

∂B

∂t
= η∇2B − B + ρ(A0 + B − d),

∂ρ

∂t
+ ∇ ·

(

2ρ

A0 + B − d
∇(B − d)

)

= ∇
2ρ − ρ(A0 + B − d) + B,

∂d

∂t
= ζ∇2d − ωd + u,

where ω = ω2/ω1 and assume A0 + B − d > 0.

First, assume constant police patrol strategy u.
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Stability to spatial disturbances

h=0.2 h=0.15 h=0.1 h=0.05 h=0.01

k 2
2 4 6 8 10

max(R(λ1,λ2,λ3))

K1.5

K1.0

K0.5

0

0.5
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What’s next?

• Look at different police patrol strategies u

• Look at relaxing some of our assumptions:
• uniformly distributed housing
• spatially constant burglar generation rate (Γ) and static burglary

attractiveness (A0)
• road network and side-of-the-street effects ignored

• Determine optimal patrol strategies
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Optimal control formulation

min
u

J :=

∫ T

0

∫

Ω

ρ (A0 + B − d) dAdt, (17)

subject to the p.d.e.s

∂B

∂t
= η∇2B − B + ρ(A0 + B − d),

∂ρ

∂t
+ ∇ ·

(

2ρ

A0 + B − d
∇(B − d)

)

= ∇
2ρ − ρ(A0 + B − d) + B,

∂d

∂t
= ζ∇2d − ωd + u,

and the constraint
∫

Ω

u dA = R, ∀t, (18)

to represent the officers available for preventative police patrols.
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